- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Ackermann, Bryce_E (1)
-
Debelouchina, Galia_T (1)
-
Elathram, Nesreen (1)
-
Lim, Byung_Joon (1)
-
Narayanan, Sirish (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dynamic nuclear polarization (DNP) is a powerful tool to enhance the NMR signals of molecules by transferring polarization from unpaired electron spins to nuclei through microwave irradiation. The resulting signal enhancements can enable the analysis of samples that have previously been intractable by NMR spectroscopy, including proteins, nucleic acids, and metabolites in cells. To carry out DNP, the sample is doped with a polarization agent, a biradical containing two nitroxide moieties. DNP applications in cells, however, present significant challenges as nitroxides are often susceptible to the reducing cellular environment. Here, we introduce a novel polarization agent, POPAPOL, that exhibits increased lifetimes under reducing conditions. We also compare its bioresistance and DNP performance with three popular, commercially available polarization agents. Our work indicates that pyrrolidine‐based nitroxides can outperform piperidine‐based nitroxides in cellular environments, and that future polarization agent designs must carefully balance DNP performance and stability for cellular applications.more » « less
An official website of the United States government
